
Bayesian Belief Networks
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Outline

• Extending the Naïve Bayes network to more complex 
networks. Joint probability

• Bayesian Belief networks (BBN). Definition. Types

• Query on BBN: what nodes to include. Markov 
blanket

• Query on BBN: how to compute. Simple example. 
Some variables may be hidden.

• Examples

• Finding network topology

• Applications of Bayesian networks



Naïve Bayes as a graph

C

E2E1 E3

This graph states that there is a probabilistic dependence between C 
and each Ei. The probability of one of these variables (Class to predict) 
is influenced by the probabilities of the rest of the variables (set of 
evidences) and vice versa



Joint probability

• P(C|E1,E2,E3) = P(C, E1,E2,E3) / P(E1,E2,E3)

• P(C|E)=P(C ∩ E)/P(E)

We can compute the probability of all these events to happen 
together:

• P(C ∩ E1 ∩ E2 ∩ E3) = P(E1|C) P(E2|C) P(E3|C) P(E4|C) *P(C)

Joint probability of all variables in the network

We can multiply because we assume: there is no probabilistic 
dependence between Ei and Ej, given the parent value C



Naïve Bayes models joint probability 
distribution for all variables in the network

C

E2E1 E3 E4

P(c|e1,e2,e3,e4)=P(c,e1,e2,e3,e4) /P(e1,e2,e3,e4)=α P(c,e1,e2,e3,e4)
P(¬c|e1,e2,e3,e4)=P(¬c,e1,e2,e3,e4)/P(e1,e2,e3,e4)= α P(¬c,e1,e2,e3,e4)

In fact, for prediction, it is enough to compute the joint probability 
of all participating variables for c and ¬c, and to compare



Chain rule to find P(c,e1,e2,e3,e4)

C

E2E1 E3 E4

P(c|e1,e2,e3,e4)=α P(c)P(e1|c)P(e2|c)P(e3|c)
P(¬c|e1,e2,e3,e4)= α P(¬c)P(e1|¬c)P(e2|¬c)P(e3|¬c)



More complex dependencies

C

E2E1

What if E1 and E2 are not 
independent?
For each node with more than 1 
parent we need Conditional 
Probability Table (CPT) with 
probability distribution for all 
possible combinations of parent 
variables:

E2

C E1 e2 ¬e2

c e1 P(e2|c,e1)

c ¬e1

¬c e1

¬c ¬e1

CPT for attribute E2



More complex dependencies

C

E2E1

P(c|e1,e2)=α P(c)P(e1|c)P(e2|c,e1)
P(¬c|e1,e2)= α P(¬c)P(e1|¬c)P(e2|¬c,e1)

After all CPTs are computed for 
each node given all possible 
combinations of values of its 
parents, the joint probability is 
computed by the same chain rule.

CPT for attribute E2

E2

C E1 e2 ¬e2

c e1 P(e2|c,e1)

c ¬e1

¬c e1

¬c ¬e1
C does not have parents, so its 
probability is unconditional



More complex dependencies

C

E2E1

P(c|e1,e2)=α P(c) P(e1|c) P(e2|c,e1)
P(¬c|e1,e2)= α P(¬c) P(e1|¬c) P(e2|¬c,e1)

After all CPTs are computed for 
each node given all possible 
combinations of values of its 
parents, the joint probability is 
computed by the same chain rule.

CPT for attribute E2

E2

C E1 e2 ¬e2

c e1 P(e2|c,e1)

c ¬e1

¬c e1

¬c ¬e1
E1 has 1 parent so its 
probability is conditioned on C



More complex dependencies

C

E2E1

P(c|e1,e2)=α P(c)P(e1|c) P(e2|c,e1)
P(¬c|e1,e2)= α P(¬c)P(e1|¬c) P(e2|¬c,e1)

After all CPTs are computed for 
each node given all possible 
combinations of values of its 
parents, the joint probability is 
computed by the same chain rule.

CPT for attribute E2

E2

C E1 e2 ¬e2

c e1 P(e2|c,e1)

c ¬e1

¬c e1

¬c ¬e1
E2 has 2 parents so its probability 
is conditioned on both C and E1



Example: weather data

Outlook
play sunny overcast rainy

Yes .238 .429 .333
No .538 .077 .385

Temperature
play outlook hot mild cool
Yes sunny .143 .429 .429
Yes overcast .455 .273 .273
Yes rainy .111 .556 .333
No sunny .556 .333 .111
No overcast .333 0.333 .333
No rainy .143 .429 .429

Humidity

Windy
play outlook false true

Yes sunny .500 .500
Yes overcast .500 .500
Yes rainy 0.125 0.875
No sunny 0.375 0.625
No overcast 0.500 0.500
No rainy 0.833 0.167

Play

yes no

.633 .367

play temp high normal
Yes hot .500 .500
Yes mild .500 .500
Yes cool .125 .875
No hot .833 0.167
No mild .833 .167
No cool .250 .750

After all CPTs are filled in, we can perform any query on joint distribution 



Joint probability: weather data

Outlook
play sunny overcast rainy

Yes .238 .429 .333
No .538 .077 .385

Temperature
play outlook hot mild cool
Yes sunny .143 .429 .429
Yes overcast .455 .273 .273
Yes rainy .111 .556 .333
No sunny .556 .333 .111
No overcast .333 0.333 .333
No rainy .143 .429 .429

Humidity

Windy
play outlook false true

Yes sunny .500 .500
Yes overcast .500 .500
Yes rainy 0.125 0.875
No sunny 0.375 0.625
No overcast 0.500 0.500
No rainy 0.833 0.167

Play

yes no

.633 .367

play temp high normal
Yes hot .500 .500
Yes mild .500 .500
Yes cool .125 .875
No hot .833 0.167
No mild .833 .167
No cool .250 .750

P(Yes|Sunny,Cool,High,True)=αP(Yes,Sunny,Cool,High,True) = α P(Yes) P(Sunny|Yes) 
P(Cool|Yes,Sunny) P(High|Yes, Cool) P (True| Yes, Sunny)



Joint probability: weather data

Outlook
play sunny overcast rainy

Yes .238 .429 .333
No .538 .077 .385

Temperature
play outlook hot mild cool
Yes sunny .143 .429 .429
Yes overcast .455 .273 .273
Yes rainy .111 .556 .333
No sunny .556 .333 .111
No overcast .333 0.333 .333
No rainy .143 .429 .429

Humidity

Windy
play outlook false true

Yes sunny .500 .500
Yes overcast .500 .500
Yes rainy 0.125 0.875
No sunny 0.375 0.625
No overcast 0.500 0.500
No rainy 0.833 0.167

Play

yes no

.633 .367

play temp high normal
Yes hot .500 .500
Yes mild .500 .500
Yes cool .125 .875
No hot .833 0.167
No mild .833 .167
No cool .250 .750

P(Yes|Sunny,Cool,High,True)=αP(Yes,Sunny,Cool,High,True) = α P(Yes) P(Sunny|Yes) 
P(Cool|Yes,Sunny) P(High|Yes, Cool) P (True| Yes, Sunny)
All these probabilities are known – just plug them in and compute



Outline

• Extending the Naïve Bayes network to more complex 
networks. Joint probability

• Bayesian Belief networks (BBN). Definition. Types

• Query on BBN: what nodes to include. Markov 
blanket

• Query on BBN: how to compute. Simple example. 
Some variables may be hidden.

• Examples

• Finding network topology

• Applications of Bayesian networks



Bayesian Belief Networks
• BBN is a graphical representation (Directed acyclic graph (DAG) –

no cycles) of probabilistic dependencies between variables

• They combine reasoning with probabilities

• Nodes: random variables

• At each node: Conditional Probability Table (CPT) - the 
probabilities for all different values of the node variable given all 
possible value combinations of its parents

• The directed edges show probabilistic influence – dependence 
between variables. Edges can be drawn in any direction: the 
direction is application-dependent

Good 
grades

Time 
spent 

studying



The meaning of edges in BBNs: 
types of networks

A

B

Increased probability of A 

makes B more likely.

A causes B

Causal 

A

B

Increased probability of B 

makes A more likely.

B is evidence for A,

A depends on B

Evidential 

A

C

B

Intercausal  

A and B can each 

cause C.  B explains C 

and so is evidence 

against A
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Bayesian Belief Networks: query

• Each query asks for a joint probability which is computed by 
applying the chain rule (multiplying corresponding conditional 
probabilities for each variable involved in the query and its 
dependants) 

• This is because all conditional probabilities for each node 
given its parent are in CPTs, and each query for conditional 
probability of a parent given its children can be computed 
using Bayes theorem



Markov Blanket Assumption

• The key feature of Bayesian Networks, which allows us to use 
the chain rule, is the assumption that the probability of each 
node is influenced only by the nodes in the Markov blanket of 
this node:

• The Markov blanket of a node is its set of neighboring nodes: 
its parents, its children, and any other parents of its children.

• No grandparents, no grandchildren, no children of its parent.



Markov Blanket of node A

The Markov blanket of a node contains all the variables that 
shield the node from the rest of the network. This means that 
the Markov blanket of a node is the only knowledge needed to 
predict the behavior of that node.



The Markov blanket assumption 

• Assumes that P(A|B)=P(A) – probability of A is not influenced 
by the value of B, if B is outside of the blanket

• This corresponds to our intuition about probabilistic 
influences

B



Markov blanket example 1

C

RS

Cold

Sneezing Runny nose

P(S|R)>P(S)
Thus, S is not independent of R: R makes C more probable, which in 
turn influences the probability of S. 
However, P(S|C) is independent of R: if we know the value of C (C is 
given), then R does not influence the probability of S:
P(S|C,R)=P(S|C)      - C ‘shields’ node S from the influence of R



Markov blanket example 1

C

RS

Cold

Sneezing Runny nose

Markov blanket of node S

Children of parents - No



Markov blanket example 2

B E

A

Burglary

Alarm

Earthquake

P(B|E)=P(B)  (independent), but P(B|A,E)<P(B|A)
If you hear an alarm, you might evaluate the probability of B, 
but if you know that it was an earthquake, this probability 
decreases: E ‘discounts’ B, E is evidence against B, then it 
should be included in its Markov blanket together with A



Markov blanket example 2

B E

A

Burglary

Alarm

Earthquake

Markov blanket of node B

Parents of children - Yes



Markov blanket example 3

C

S

D

Cheating 
spouse

Dining with 
stranger

Seen dining 
with 
stranger

P(C|S)>P(C)
P(C|D,S)=P(C|D)

If D is known 
(given), then there 
is no influence of 
hearsay S on the 
probability of C



Markov blanket example 3

C

S

D

Cheating 
spouse

Dining 
with 
stranger

Seen dining with 
stranger

Markov blanket of node C Children of children - No



Remember 

• When performing a query on Bayesian 
network, include parents, children and the 
parents of the children of participating nodes 
into the calculation of joint probabilities



Market blanket of node C?

A

D
B

F

C

G

E



Market blanket of node C?

A

D
B

F

C

G

E



Alarm example

Query: what is the probability of John calling given that Mary called



Alarm example

Query: what is the probability of Alarm given that John called



Alarm example

Query: what is the probability of Burglary given that John called 
and Mary called



Another example: High Blood Pressure

Query: what is the probability of Heart disease given chest pain



Outline

• Extending the Naïve Bayes network to more complex 
networks. Joint probability

• Bayesian Belief networks (BBN). Definition. Types

• Query on BBN: what nodes to include. Markov 
blanket
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The recipe for computing any query

• In complex networks: select subset of nodes 
which are inside Market blankets of 
participating nodes

• Compute joint probabilities of these nodes by 
the chain rule, substituting random variables  
by the evidence values



Wet Grass example: predicting rain

R

G

S

Grass wet

Grass wet
Rain Sprinkler g ¬g

r s 0.99 0.01
r ¬s 0.8 0.2

¬r s 0.90 0.10
¬r ¬s 0.01 0.99

Rain
r ¬r

0.20 0.80

Sprinkler
Rain s ¬s

r 0.40 0.60
¬r 0.99 0.01

We know that Sprinkler 
was off: S= ¬s
and grass is wet: G=g

Was it raining?
P(r|g, ¬s)=?
P(¬ r|g, ¬s)=?



Wet Grass example: predicting rain

R

G

S

Grass wet

Grass wet
Rain Sprinkler g ¬g

r s 0.99 0.01
r ¬s 0.8 0.2

¬r s 0.90 0.10
¬r ¬s 0.01 0.99

Rain
r ¬r

0.20 0.80

Sprinkler
Rain s ¬s

r 0.40 0.60
¬r 0.99 0.01

S= ¬s,  G=g

P(r|g, ¬s)=?
P(¬ r|g, ¬s)=?

P(r|g, ¬s)=α P(r, g, ¬s)
= α P(r) P(¬s|r) P(g|r, ¬s)

P(¬ r|g, ¬s)=α P(¬ r, g, ¬s)
= α P(¬ r) P(¬s| ¬ r) P(g| ¬ r, ¬s)

All probabilities are given in 
CPTs, so we just plug in and 
compute



Wet Grass example: predicting rain

R

G

S

Grass wet

Grass wet
Rain Sprinkler g ¬g

r s 0.99 0.01
r ¬s 0.8 0.2

¬r s 0.90 0.10
¬r ¬s 0.01 0.99

Rain
r ¬r

0.20 0.80

Sprinkler
Rain s ¬s

r 0.40 0.60
¬r 0.99 0.01

S= ¬s,  G=g

P(r|g, ¬s)=?
P(¬ r|g, ¬s)=?

P(r|g, ¬s)
= α P(r) P(¬s|r) P(g|r, ¬s)
= α 0.20*0.60*0.8
= α 0.096

P(¬ r|g, ¬s)
= α P(¬ r) P(¬s| ¬ r) P(g| ¬ r, ¬s)
= α 0.80 * 0.01 *0.01
= α 0.00008

Definitely, it was raining 



Wet Grass example: hidden variables

R

G

S

Grass wet

Grass wet
Rain Sprinkler g ¬g

r s 0.99 0.01
r ¬s 0.8 0.2

¬r s 0.90 0.10
¬r ¬s 0.00 1.00

Rain
r ¬r

0.20 0.80

Sprinkler
Rain s ¬s

r 0.40 0.60
¬r 0.99 0.01

All we know that the grass is wet: 
G=g

P(r|g)=?

The value of S is unknown: S is a 
hidden variable which influences 
G and depends on R. We need to 
include it into the joint 
probability:

P(r|g)=α P(r, g, S)
= α P(r) P(S|r) P(g|r, S)=
= α P(r) *
[P(s|r) P(g|r, s)+ P(¬s|r) P(g|r, ¬s)]

Sprinkler was or on or off



Wet Grass example: hidden variables

R

G

S

Grass wet

Grass wet
Rain Sprinkler g ¬g

r s 0.99 0.01
r ¬s 0.8 0.2

¬r s 0.90 0.10
¬r ¬s 0.00 1.00

Rain
r ¬r

0.20 0.80

Sprinkler
Rain s ¬s

r 0.40 0.60
¬r 0.99 0.01

All we know that the grass is wet: 
G=g

P(r|g)=?

P(r|g)=α P(r, g, S T v F)
= α P(r) P(S T v F |r) P(g|r, S T v F)=
= α P(r) *
[P(s|r) P(g|r, s)+ P(¬s|r) P(g|r, ¬s)]

We add because we don’t 
know the value of S, and we 
consider it as being or false, 
or true.
We apply theorems V, VI 
from PROBABILITY slides



Hidden (missing) evidences

• For each hidden variable consider all possible values of this 
variable and perform summation by substituting this variable 
with all possible values in turn



Outline

• Extending the Naïve Bayes network to more complex 
networks. Joint probability

• Bayesian Belief networks (BBN). Definition. Types

• Query on BBN: what nodes to include. Markov 
blanket

• Query on BBN: how to compute. Simple example. 
Some variables may be hidden.

• Examples: I. High blood pressure

• Finding network topology

• Applications of Bayesian networks



Example IA: High Blood Pressure

Once the right topology has been found. the probability table associated with 

each node is determined. 

Estimating such probabilities similar to the approach used by naïve Bayes 

classifiers is done by counting rows where all the assignments of variables hold.



Example IA: High Blood Pressure
• Suppose we get to know that the new patient has high blood 

pressure. 
• What’s the probability he has heart disease under this condition?
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Example IA: High Blood Pressure
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Example IA: High Blood Pressure ()

5185.0

1

1020.04165.0

1



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Example IB: 
High Blood Pressure, Healthy Diet, Regular Exercise



Example IB: Probability of heart disease
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Example IB: Probability of not heart disease
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Example I. High Blood Pressure, 

Healthy Diet, and Regular Exercise

06344.0

1

02625.003719.0

1





5862.003719.0*),,|( edbphdP

0.413802625.0*),,|(  edbphdP

The model therefore suggests that eating healthily and exercising 

regularly may reduce a person's risk of getting heart disease, even if 

he has high blood pressure



Outline

• Extending the Naïve Bayes network to more complex 
networks. Joint probability

• Bayesian Belief networks (BBN). Definition. Types

• Query on BBN: what nodes to include. Markov 
blanket

• Query on BBN: how to compute. Simple example. 
Some variables may be hidden.

• Examples: II. Alarm and burglary

• Finding network topology

• Applications of Bayesian networks



Example II: Burglary
• I'm at work, neighbor John calls to say my alarm is ringing, but 

neighbor Mary doesn't call. Sometimes it's set off by minor 
earthquakes. Is there a burglar?

• John always calls when he hears the alarm, but sometimes 
confuses the telephone ringing with the alarm.

• Mary likes rather loud music and sometimes misses the alarm. 

• Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

• Network topology reflects "causal" knowledge:
– A burglar can set the alarm off
– An earthquake can set the alarm off
– The alarm can cause Mary to call
– The alarm can cause John to call



Example II: Burglary

The topology shows that burglary and earthquakes directly affect the probability 

of alarm, but whether Mary or John call depends only on the alarm. 

Our assumptions are that they don’t perceive any burglaries directly, 

and they don’t confer before calling.

To save space, some of

the probabilities have been omitted 

from the diagram. The omitted 

probabilities can be recovered by noting 

that P(X = x) = 1 - P(X = x) and 

P(X = x|Y) = 1 - P(X=x|Y), where x 

denotes the opposite outcome of x.



Example II: Classification
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• Suppose, we are given for the evidence variables E1,…,Em, their 

values e1,…,em, and we want to predict whether the query 

variable X has the value x or not. 

• For this we compute and compare the following:

• However, how do we compute:

?),...,,(

and    

),...,,(

1

1

m

m

eexP

eexP




What about the hidden variables 
Y1,…,Yk?



Example II: Classification of burglary and earthquake

• Suppose, we are given for the evidence variables J=j and M=m, 

and we want to predict whether the query variable B has the 

value b or not b. 

• However, to evaluate the probability of B we need to know: 

whether alarm really went off and whether it was an earthquake.

• A and E are hidden variables

?),...,,(

and    

),...,,(

1

1

m

m

eexP

eexP




What about the hidden variables 
Y1,…,Yk?

Hidden 
variables



Example II: Inference by enumeration
Example: P(burglary | johhcalls, marycalls)? (Abbrev. P(b|j,m))
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In general:

Alarm rings, 
earthquake

No alarm, 
earthquake

Alarm rings, 
no earthquake

No alarm, 
no earthquake

Or

where y1,…yk are hidden variables



Example II: Numerically…

P(b | j,m) =  P(b) a P(j|a)P(m|a)eP(a|b,e)P(e) = …=  * 0.00059

P(b | j,m) =  P(b) a P(j|a)P(m|a)eP(a| b,e)P(e) = …=  * 0.0015

P(B | j,m) =  <0.00059, 0.0015> = <0.28, 0.72>.



Example II: P(b | j,m)
P(b | j,m) =  P(b) a P(j|a)P(m|a)eP(a|b,e)P(e) 

=  P(b) a P(j|a)P(m|a)(P(a|b,e)P(e) + P(a|b,e)P(e)) 

=  P(b)( P(j|a)P(m|a)( P(a|b,e)P(e) + P(a|b,e)P(e) ) 

+ P(j|a)P(m|a)( P(a|b,e)P(e) + P(a|b,e)P(e) ))

=  * .001*(.9*.7*(.95*.002 + .94*.998) +.05*.01*(.05*.002 + .71*.998) )

=  * .00059



Example II: P(b | j,m)
P(b | j,m) =  P(b) a P(j|a)P(m|a)eP(a|b,e)P(e) 

=  P(b) a P(j|a)P(m|a)(P(a|b,e)P(e) + P(a|b,e)P(e)) 

=  P(b)( P(j|a)P(m|a)( P(a|b,e)P(e) + P(a|b,e)P(e) ) 

+ P(j|a)P(m|a)( P(a|b,e)P(e) + P(a|b,e)P(e) ))

=  * .999*(.9*.7*(.29*.002 + .001*.998) +.05*.01*(.71*.002 + .999*.998) )

=  * .0015

 = 1/(.00059 + .0015) 

=  478.5

P(b | j,m) = 478.5 * .00059

=.28

P(b | j,m) = 478.5 * .0015

=.72



Outline

• Extending the Naïve Bayes network to more complex 
networks. Joint probability

• Bayesian Belief networks (BBN). Definition. Types

• Query on BBN: what nodes to include. Markov 
blanket

• Query on BBN: how to compute. Simple example. 
Some variables may be hidden.

• Examples: III Mystery

• Finding network topology

• Applications of Bayesian networks



Example III: Solving the mystery

• One early morning the maid was dusting the window when she saw 
something horrific. Right outside the window lay dead Mr. Boddy. 
She called the police and a detective was assigned to the case

• The detective, a former computer scientist, always tried to make his 
job as easy as possible. 

• After a brief examination, he determined that Mr. Boddy has been 
hit over the head with a dull instrument, probably made of metal. 
The detective found two candidate weapons that matched the 
crime scene: an extension of Vacuum cleaner (V) used by the maid 
and a candle Stick (S) used by the butler.

• He took a brief statement from both the Made (M) and the Butler 
(B), the only two individuals who could have possibly committed 
the murder.

• Then he went to his office and decided to create BBN to determine 
whether the murderer is likely to confess



Example III: Network topology

• T – time of day when the 
murder was committed: 
evening (e) or night (n)

• W – crime weapon: 
vacuum (v) or stick (s)

• M- murderer: maid (m) or 
butler (b)

• C – will confess: yes or no

W

M

T

C



Example III: CPT for Time

• T- time: the murder was 
committed in the 
evening (e) or at night 
(n), but much more 
likely at night

W

M

T

C

e n
.05 .95



Example III: CPT for Weapon

• W- weapon: the 
murder weapon 
was most likely an 
extension to 
vacuum cleaner 
than the candle 
stick

W

M

T

C

e n
.05 .95

v s
.80 .20



Example III: CPT Murderer

• M- murderer: 
Although it is 
possible for one 
employee to use 
the tool of another, 
it is very unlikely
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v s
.80 .20



Example III: CPT Murderer

• Probabilities that 
maid did it given 
combinations of 
time and murder 
weapon 

W

M

T

C

e n
.05 .95

v s
.80 .20

T W m b
e v .90

e s .55

n v
n s



Example III: CPT Murderer

• Probabilities that 
maid did it given 
combinations of 
time and murder 
weapon 

W

M

T

C

e n
.05 .95

v s
.80 .20

T W m b
e v .90

e s .55

n v .35

n s .05



Example III: CPT Murderer

• And the butler takes 
the rest (mutually 
exclusive events)
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.05 .95
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T W m b
e v .90 .10

e s .55 .45

n v .35 .65

n s .05 .95



Example III: CPT Confession

• The maid has a very 
strong conscience 
and she will 
eventually confess if 
she committed the 
murder. The butler 
is quite opposite
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Example III: The probability of 
confession (nothing is given)

• The detective can 
evaluate the 
probability that the 
murderer will 
confess without 
having any real 
evidence

W

M

T

C

e n
.05 .95

v s
.80 .20

T W m b
e v .90 .10

e s .55 .45

n v .35 .65

n s .05 .95

M yes no
m .90 .10

b .40 .60



Example III: 
The probability of confession

P(c|_)= α∑t ∑w ∑mP(T)P(W)P(M|T,W)P(c|M) 

= α ∑t P(T) ∑w P(W) ∑mP(M|T,W)P(c|M) 

= α ∑t P(T) ∑w P(W) [P(m|T,W)P(c|m) 

+ P(b|T,W)P(c|b)] 

= α ∑t P(T) ∑w P(W) P(m|T,W) *0.90 

+ α ∑t P(T) ∑w P(W) P(b|T,W) *0.40 
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T W m b
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n v .35 .65

n s .05 .95

M yes no
m .90 .10

b .40 .60



Example III: 
The probability of confession

P(c|_)/ α = ∑t P(T) ∑w P(W) P(m|T,W) *0.90 

+  ∑t P(T) ∑w P(W) P(b|T,W) *0.40

=  ∑t P(T) P(v) P(m|T,v) *0.90 

+  ∑t P(T) P(s) P(m|T,s) *0.90 

+  ∑t P(T) P(v) P(b|T,v) *0.40

+  ∑t P(T) P(s) P(b|T,s) *0.40
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.05 .95

v s
.80 .20

T W m b
e v .90 .10

e s .55 .45

n v .35 .65

n s .05 .95

M yes no
m .90 .10

b .40 .60



Example III: 
The probability of confession

P(c|_)/ α = ∑t P(T) ∑w P(W) P(m|T,W) *0.90 

+  ∑t P(T) ∑w P(W) P(b|T,W) *0.40

=  ∑t P(T) *0.80 * P(m|T,v) *0.90 

+  ∑t P(T) *0.20* P(m|T,s) *0.90 

+  ∑t P(T) *0.80 * P(b|T,v) *0.40

+  ∑t P(T) *0.20* P(b|T,s) *0.40
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T
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e n
.05 .95

v s
.80 .20

T W m b
e v .90 .10

e s .55 .45

n v .35 .65

n s .05 .95

M yes no
m .90 .10

b .40 .60



Example III: 
The probability of confession

P(c|_)/ α =  ∑t P(T) *0.80 * P(m|T,v) *0.90 

+  ∑t P(T) *0.20* P(m|T,s) *0.90 

+  ∑t P(T) *0.80 * P(b|T,v) *0.40

+  ∑t P(T) *0.20* P(b|T,s) *0.40 = 
P(e)*0.80 * P(m|e,v) * 0.90+P(n)*0.80 * P(m|n,v)*0.90 +

P(e) *0.20* P(m|e,s) *0.90+ P(n) *0.20* P(m|n,s) *0.90 +

P(e) *0.80 * P(b|e,v) *0.40+ P(n) *0.80 * P(b|n,v) *0.40 +

P(e) *0.20* P(b|e,s) *0.40+ P(n) *0.20* P(b|n,s) *0.40 
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T

C

e n
.05 .95
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T W m b
e v .90 .10

e s .55 .45

n v .35 .65

n s .05 .95

M yes no
m .90 .10

b .40 .60



Example III: 
The probability of confession

P(c|_)/ α =  ∑t P(T) *0.80 * P(m|T,v) *0.90 

+  ∑t P(T) *0.20* P(m|T,s) *0.90 

+  ∑t P(T) *0.80 * P(b|T,v) *0.40

+  ∑t P(T) *0.20* P(b|T,s) *0.40 = 
0.05*0.80 * P(m|e,v) * 0.90+0.95*0.80 * P(m|n,v)*0.90 +

0.05 *0.20* P(m|e,s) *0.90+ 0.95 *0.20* P(m|n,s) *0.90 +

0.05 *0.80 * P(b|e,v) *0.40+ 0.95*0.80 * P(b|n,v) *0.40 +

0.05 *0.20* P(b|e,s) *0.40+ 0.95 *0.20* P(b|n,s) *0.40 

W

M

T
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e n
.05 .95
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T W m b
e v .90 .10

e s .55 .45

n v .35 .65

n s .05 .95
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Example III: 
The probability of confession

P(c|_)/ α =  ∑t P(T) *0.80 * P(m|T,v) *0.90 

+  ∑t P(T) *0.20* P(m|T,s) *0.90 

+  ∑t P(T) *0.80 * P(b|T,v) *0.40

+  ∑t P(T) *0.20* P(b|T,s) *0.40 = 
0.05*0.80 * 0.90 * 0.90+0.95*0.80 * 0.35*0.90 +

0.05 *0.20* 0.55 *0.90+ 0.95 *0.20* 0.05 *0.90 +

0.05 *0.80 * 0.10 *0.40+ 0.95*0.80 *0.65 *0.40 +

0.05 *0.20* 0.45 *0.40+ 0.95 *0.20* 0.95 *0.40 = 0.56
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Example III: 
The probability of non-confession
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P(¬c|_)= α∑t ∑w ∑mP(T)P(W)P(M|T,W)P(¬c|M) 

= α ∑t P(T) ∑w P(W) ∑mP(M|T,W)P(¬c|M) 

= α ∑t P(T) ∑w P(W) [P(m|T,W)P(¬c|m) 

+∑w P(b|T,W)P(¬c|b)] 

= α ∑t P(T) ∑w P(W) P(m|T,W) *0.10 

+ α ∑t P(T) ∑w P(W) P(b|T,W) *0.60 



Example 3: 
The probability of non-confession

P(¬c|_)/ α = ∑t P(T) ∑w P(W) P(m|T,W) *0.90 

+  ∑t P(T) ∑w P(W) P(b|T,W) *0.40

=  ∑t P(T) P(v) P(m|T,v) *0.10 

+  ∑t P(T) P(s) P(m|T,s) *0.10 

+  ∑t P(T) P(v) P(b|T,v) *0.60

+  ∑t P(T) P(s) P(b|T,s) *0.60
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Example 3: 
The probability of non-confession

P(¬c|_)/ α = ∑t P(T) ∑w P(W) P(m|T,W) *0.90 

+  ∑t P(T) ∑w P(W) P(b|T,W) *0.40

=  ∑t P(T) *0.80 * P(m|T,v) *0.10 

+  ∑t P(T) *0.20* P(m|T,s) *0.10 

+  ∑t P(T) *0.80 * P(b|T,v) *0.60

+  ∑t P(T) *0.20* P(b|T,s) *0.60

W

M

T

C

e n
.05 .95

v s
.80 .20

T W m b
e v .90 .10

e s .55 .45

n v .35 .65
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Example 3: 
The probability of confession

P(¬c|_)/ α =  ∑t P(T) *0.80 * P(m|T,v) *0.10 

+  ∑t P(T) *0.20* P(m|T,s) *0.10 

+  ∑t P(T) *0.80 * P(b|T,v) *0.60

+  ∑t P(T) *0.20* P(b|T,s) *0.60 = 
P(e)*0.80 * P(m|e,v) * 0.10+P(n)*0.80 * P(m|n,v)*0.10 +

P(e) *0.20* P(m|e,s) *0.10+ P(n) *0.20* P(m|n,s) *0.10 +

P(e) *0.80 * P(b|e,v) *0.60+ P(n) *0.80 * P(b|n,v) *0.60 +

P(e) *0.20* P(b|e,s) *0.60+ P(n) *0.20* P(b|n,s) *0.60 
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T

C

e n
.05 .95

v s
.80 .20

T W m b
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n v .35 .65

n s .05 .95
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Example 3: 
The probability of non-confession

P(¬c|_)/ α =  ∑t P(T) *0.80 * P(m|T,v) *0.90 

+  ∑t P(T) *0.20* P(m|T,s) *0.90 

+  ∑t P(T) *0.80 * P(b|T,v) *0.40

+  ∑t P(T) *0.20* P(b|T,s) *0.40 = 
0.05*0.80 * P(m|e,v) * 0.10+0.95*0.80 * P(m|n,v)*0.10 +

0.05 *0.20* P(m|e,s) *0.10+ 0.95 *0.20* P(m|n,s) *0.10 +

0.05 *0.80 * P(b|e,v) *0.60+ 0.95*0.80 * P(b|n,v) *0.60 +

0.05 *0.20* P(b|e,s) *0.60+ 0.95 *0.20* P(b|n,s) *0.60 

W

M

T

C

e n
.05 .95

v s
.80 .20

T W m b
e v .90 .10

e s .55 .45

n v .35 .65

n s .05 .95
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b .40 .60



Example 3: 
The probability of non-confession

P(c|_)/ α =  ∑t P(T) *0.80 * P(m|T,v) *0.90 

+  ∑t P(T) *0.20* P(m|T,s) *0.90 

+  ∑t P(T) *0.80 * P(b|T,v) *0.40

+  ∑t P(T) *0.20* P(b|T,s) *0.40 = 
0.05*0.80 * 0.90 * 0.10+0.95*0.80 * 0.35*0.10 +

0.05 *0.20* 0.55 *0.10+ 0.95 *0.20* 0.05 *0.10 +

0.05 *0.80 * 0.10 *0.60+ 0.95*0.80 *0.65 *0.60 +

0.05 *0.20* 0.45 *0.60+ 0.95 *0.20* 0.95 *0.60 = 0.44
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M yes no
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b .40 .60 Most probably they will confess, - said the detective, 
and went home



Outline

• Extending the Naïve Bayes network to more complex 
networks. Joint probability

• Bayesian Belief networks (BBN). Definition. Types

• Query on BBN: what nodes to include. Markov 
blanket

• Query on BBN: how to compute. Simple example. 
Some variables may be hidden.

• Examples

• Finding network topology

• Applications of Bayesian networks



Finding topology of Bayesian networks

1. Done by human expert

2. Automated learning of network from data



Constructing Bayesian networks by 
human experts

1. Choose an ordering of variables X1, … ,Xn

2. For i = 1 to n
– add Xi to the network
– select parents from X1, … ,Xi-1 such that

P(Xi | Parents(Xi)) = P(Xi | X1, ... Xi-1)

This choice of parents guarantees:
P(X1, … ,Xn) = i =1 P(Xi | X1, … , Xi-1)   (chain rule)

= i =1P(Xi | Parents(Xi))    (by construction)

• Choosing the parents from X1, … , Xi-1 is done by 
domain human experts.



• The ordering of variables is very important. 

• E.g. suppose we choose the ordering M, J, 
A, B, E

Adding MaryCalls: No parents

P(J|M) = P(J)?

Is P(John calling) independent of P(Mary 
calling)?

Clearly not, since, on any given day, if 
Mary called, then the probability that 
John called is much better than the 
background probability that he called.

So, we add a link from MaryCalls to 
JohnCalls.

Expert construction: Example



• Suppose we choose the ordering   
M, J, A, B, E

Adding the A (Alarm) node: Is

P(A | J, M) = P(A | J)?

P(A | J, M) = P(A)?

No.

Clearly, if both call, it’s more likely that 
the alarm has gone off that if just 
one or neither call, so we need both 
MaryCalls and JohnCalls as 
parents.

Expert construction: Example



• Suppose we choose the ordering 
M, J, A, B, E

Adding B (Burglary) node: Is 

P(B | A, J, M) = P(B | A)? 

P(B | A, J, M) = P(B)?

Yes for the first. No for the second.

If we know the alarm state, then the 
call from John or Mary might give 
us information about the phone 
ringing or Mary’s music, but not 
about burglary.

So,  we need just Alarm as parent.

Expert construction: Example



• Suppose we choose the ordering        
M, J, A, B, E

• Adding E (Earthquake) node: Is

P(E | B, A ,J, M) = P(E | A)?

P(E | B, A, J, M) = P(E | A, B)?

No for the first. Yes for the second.

If the alarm is on, it is more likely that 
there has been an earthquake. 

But if we know there has been a 
burglary, then that explains the alarm, 
and the probability of an earthquake 
would be only slightly above normal.

Hence we need both Alarm and Burglary 
as parents. 

Expert construction: Example



Expert construction: Example

• So, the network is less compact if we go non-causal: 1 + 2 + 4 + 2 + 
4 = 13 numbers needed instead of 10 if we go in causal direction.

• Deciding conditional independence is harder in noncausal
directions

• Causal models and conditional independence seem hardwired for 
humans!



Right or Wrong Topology?

• If the topology is constructed manually, we (humans) tend to 
prefer the causal direction. 
– In domains such as medicine the graphs are usually less 

complex in the causal direction.

• But any topology is acceptable given there is probabilistic 
dependence between connected variables.

• The relative quality of a network is assessed by the 
performance of a corresponding BBN classifier.



Automatic construction

• Checking all combinations of variables for conditional 
independence is feasible only for very small datasets

• Uses local optimization techniques - heuristics



Weather data: Naïve Bayes network



Weka suggestion for BBN
How Weka finds the shape of 
the graph?

Fixes an order of attributes 
(variables) and then adds and 
removes arcs until it gets the 
smallest estimated error 
(through cross-validation). 

By default it starts with a Naïve 
Bayes network. 

Also, it maintains a score of 
graph complexity, trying to keep 
the complexity low. 





You can change to 2 for 
example. 

If you do, then the max 
number of parents for a 

node will be 2.  

It is going to start with a 
Naïve Bayes graph and 
then try to add/remove 

arcs. 

Laplace correction. 
Better change it to 1, to be 

compatible with the counter 
initialization in Naïve Bayes.  



Play probability table
Based on the data…

P(play=yes) = 9/14
P(play=no) = 5/14

P(play=yes) = (9+1)/(14+2) = .625
P(play=yes) = (5+1)/(14+2) = .375

Let’s correct with Laplace …



Outlook probability table
Based on the data…

P(outlook=sunny|play=yes) = 
(2+1)/(9+3) = .25
P(outlook=overcast|play=yes) = 
(4+1)/(9+3) = .417
P(outlook=rainy|play=yes) = 
(3+1)/(9+3) = .333

P(outlook=sunny|play=no) = 
(3+1)/(5+3) = .5
P(outlook=overcast|play=no) = 
(0+1)/(5+3) = .125
P(outlook=rainy|play=no) = 
(2+1)/(5+3) = .375



Windy probability table

P(windy=true|play=yes,outlook=sunny) 
= (1+1)/(2+2) = .5

Based on the data…let’s find 
the conditional probabilities 
for “windy”



Windy probability table

P(windy=true|play=yes,outlook=sunny) 
= (1+1)/(2+2) = .5

P(windy=true|play=yes,outlook=overcast) 
= 0.5 

P(windy=true|play=yes,outlook=rainy) = 0.2

P(windy=true|play=no,outlook=sunny) = 0.4

P(windy=true|play=no,outlook=overcast) 
= 0.5

P(windy=true|play=no,outlook=rainy) = 0.75

Based on the data…



Final figure

Classify it

Classify it



Classification I Classify it

P(play=yes|outlook=sunny,  
temp=cool,humidity=high, 
windy=true) =

*P(play=yes)
*P(outlook=sunny|play=yes)
*P(temp=cool|play=yes, 

outlook=sunny)
*P(humidity=high|play=yes, 

temp=cool)
*P(windy=true|play=yes, 

outlook=sunny)

= *0.625*0.25*0.4*0.2*0.5
= *0.00625



Classification II Classify it

P(play=no|outlook=sunny,  
temp=cool,humidity=high, 
windy=true) =

*P(play=no)
*P(outlook=sunny|play=no)
*P(temp=cool|play=no, 

outlook=sunny)
*P(humidity=high|play= no, 

temp=cool)
*P(windy=true|play=no, 

outlook=sunny)

= *0.375*0.5*0.167*0.333*0.4
= *0.00417



Classification III Classify it

P(play=yes|outlook=sunny,  
temp=cool,humidity=high, 
windy=true) 
= *0.00625

P(play=no|outlook=sunny,  
temp=cool,humidity=high, 
windy=true) 
= *.00417

 = 1/(0.00625+0.00417) 
=95.969

P(play=yes|outlook=sunny,  
temp=cool,humidity=high, 
windy=true) 
= 95.969*0.00625 = 0.60



Classification IV (missing values or hidden variables)

P(play=yes|temp=cool, 
humidity=high, windy=true) 

= *outlookP(play=yes)
*P(outlook|play=yes)
*P(temp=cool|play=yes,outlook)
*P(humidity=high|play=yes, 

temp=cool)
*P(windy=true|play=yes,outlook)

=…(next slide)



Classification V (missing values or hidden variables)

P(play=yes|temp=cool, humidity=high, windy=true) 

= *outlookP(play=yes)*P(outlook|play=yes)*P(temp=cool|play=yes,outlook)
*P(humidity=high|play=yes,temp=cool)*P(windy=true|play=yes,outlook)

= *[
P(play=yes)*P(outlook= sunny|play=yes)*P(temp=cool|play=yes,outlook=sunny)
*P(humidity=high|play=yes,temp=cool)*P(windy=true|play=yes,outlook=sunny)

+P(play=yes)*P(outlook= overcast|play=yes)*P(temp=cool|play=yes,outlook=overcast)
*P(humidity=high|play=yes,temp=cool)*P(windy=true|play=yes,outlook=overcast)

+P(play=yes)*P(outlook= rainy|play=yes)*P(temp=cool|play=yes,outlook=rainy)
*P(humidity=high|play=yes,temp=cool)*P(windy=true|play=yes,outlook=rainy)
]

= *[ 
0.625*0.25*0.4*0.2*0.5 + 0.625*0.417*0.286*0.2*0.5 + 0.625*0.33*0.333*0.2*0.2 ]

=*0.01645



Classification VI (missing values or hidden variables)

P(play=no|temp=cool, humidity=high, windy=true) 

= *outlookP(play=no)*P(outlook|play=no)*P(temp=cool|play=no,outlook)
*P(humidity=high|play=no,temp=cool)*P(windy=true|play=no,outlook)

= *[
P(play=no)*P(outlook=sunny|play=no)*P(temp=cool|play=no,outlook=sunny)
*P(humidity=high|play=no,temp=cool)*P(windy=true|play=no,outlook=sunny)

+P(play=no)*P(outlook= overcast|play=no)*P(temp=cool|play=no,outlook=overcast)
*P(humidity=high|play=no,temp=cool)*P(windy=true|play=no,outlook=overcast)

+P(play=no)*P(outlook= rainy|play=no)*P(temp=cool|play=no,outlook=rainy)
*P(humidity=high|play=no,temp=cool)*P(windy=true|play=no,outlook=rainy)
]

= *[ 
0.375*0.5*0.167*0.333*0.4 + 0.375*0.125*0.333*0.333*0.5 + 0.375*0.375*0.4*0.333*0.75 

]
=*0.0208



Classification VII (missing values or hidden variables)

P(play=yes|temp=cool, humidity=high, windy=true) =*0.01645
P(play=no|temp=cool, humidity=high, windy=true) =*0.0208

=1/(0.01645 + 0.0208)= 26.846

P(play=yes|temp=cool, humidity=high, windy=true) = 26.846 * 0.01645 = 0.44
P(play=no|temp=cool, humidity=high, windy=true) = 26.846 * 0.0208 = 0.56

I.e. P(play=yes|temp=cool, humidity=high, windy=true) is 44% and
P(play=no|temp=cool, humidity=high, windy=true) is 56%

So, we predict ‘play=no.’



Outline

• Extending the Naïve Bayes network to more complex 
networks. Joint probability

• Bayesian Belief networks (BBN). Definition. Types

• Query on BBN: what nodes to include. Markov 
blanket

• Query on BBN: how to compute. Simple example. 
Some variables may be hidden.

• Examples

• Finding network topology

• Applications of Bayesian networks



Applications of Bayesian Belief 
Networks

• Probably, the most important technology in the Machine 
Learning / AI field to have emerged in the last 10 years.

• A clean, clear, manageable language and methodology for 
expressing what you’re certain and uncertain about

• Many practical applications in medicine, factories, helpdesks:

P(this problem | these symptoms)

anomalousness of this observation

choosing next diagnostic test | these observations



Pathfinder system*

• Diagnostic system for lymph-node diseases.
• 60 diseases and 100 symptoms and test-results.
• 14,000 probabilities
• Experts consulted to make net. Apparently, the experts 

found it quite easy to invent the causal links and 
probabilities.

• 8 hours to determine variables.
• 35 hours for net topology.
• 40 hours for probability table values.
• Pathfinder is now outperforming the world experts in 

diagnosis. Being extended to several dozen other medical 
domains.

* Heckerman 1991, Probabilistic Similarity Networks, MIT Press, Cambridge MA


